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Abstract: Regularized loss minimization, where a statistical model is obtained from minimizing the sum of a loss
function ` and weighted regularization terms ri, is still in widespread use in machine learning:

min
x∈F

`(x) +

q∑
i=1

αiri(x) . (Pα)

The statistical performance of the resulting models depends on the choice of weights αi (regularization parameters)
that are typically tuned by cross-validation. For finding the best regularization parameters, the regularized mini-
mization problem (Pα) needs to be solved for the whole parameter domain. A practically more feasible approach
is covering the parameter domain with approximate solutions of the loss minimization problem for some prescribed
approximation accuracy. The problem of computing such a covering is known as the approximate solution gamut
problem.
Existing algorithms for the solution gamut problem suffer from several problems. For instance, they require a grid on
the parameter domain whose spacing is difficult to determine in practice, and they are not generic in the sense that
they rely on problem specific plug-in functions. Here, we show that a well-known algorithm from vector optimization,
namely Benson’s algorithm, can be used directly for computing approximate solution gamuts while avoiding the
problems of existing algorithms.
Experiments on real world data sets demonstrate the effectiveness of Benson’s algorithm for regularization parameter
tracking. Therefore, we study

(1) Linear Regression by the Elastic Net: In this regression model, a least squares term serves as cost function, while
an L1-regularization term promotes the sparsity of the solution and a squared L2-regularization terms aims for
a grouped selection of the variables.

(2) Latent Variable Graphical Models: Here, a precision matrix for a graphical model has to be decomposed into
a sparse and a low-rank component. Those both structures are obtained by an L1-norm and a nuclear norm,
respectively, which are used as regularization functions. To learn this model, semidefinite programs have to be
solved.


