

Book of Modules for the Elite Master's Programme Scientific Computing

Faculty for Mathematics, Physics and Computer Science, University of Bayreuth, Germany

March 11, 2021

Preface

This Book of Modules describes all currently admissible modules for the elite master's programme *Scientific Computing* and their assignment to the module areas decribed in the examination regulations "Studien- und Prüfungsordnung". Each module description contains the frequency (and sometimes the term) with which the corresponding course is offered; the list of courses actually provided during the current semester is published via Campus Online. The coordinator of this master's programme will be glad to help you selecting suitable courses to satisfy the requirements formulated in the examination regulations.

The executive committee of the elite master's programme

March 11, 2021

Contents

1	Module Section A: Numerical Mathematics	3
	1.1 Module A1: Numerical Methods for Differential Equations	3
	1.2 Elective Modules A2: Advanced Topics in Numerical Mathematics	4
2	Module Section B: Modeling and Simulation	10
	2.1 Module B1: Applied Functional Analysis	10
	2.2 Elective Modules B2: Modeling and Simulation	11
	2.3 Module B3: Industrial Internship	23
	2.4 Module B4: Modeling and Status Seminar	25
3	Module Section C: High-Performance Computing	26
	3.1 Elective Modules C1: High-Performance Computing	26
	3.2 Module C2: Practical Course on Parallel Numerical Methods	33
4	Module Section D: Scientific Computing	34
	4.1 Elective Modules D1: Complexity Reduction	34
	4.2 Module D2: Special Skills in Scientific Computing	44
5	Module Section E: Soft Skills	45
6	Module Section F: Master's Thesis	46
7	Recommended Curriculum	47

1 Module Section A: Numerical Mathematics

1.1 Module A1: Numerical Methods for Differential Equations

Title	Numerical Methods for Differential Equations
Module Label	A1
Module Type	Lecture
Area of Research	Numerical Mathematics
Responsible	Chairs of Applied and Numerical Analysis, Applied Mathematics, Scientific Computing
Learning Outcomes	This module lays ground to many modules of this programme. It should be attended during the first semester in order to be able to
	 understand the way numerical algorithms for the solution of ordinary and partial differential equations work
	choose a suitable algorithm for a given class of ordinary and partial differential equations
	adapt standard algorithms to new problems
	 implement the algorithms discussed in the lecture in MATLAB or in a higher programming language.
	In contrast to students who have passed bachelor module C1, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	 One step methods for ordinary differential equations (convergence, Runge-Kutta- and extrapolation methods, methods for stiff differential equations, step size control) multi step schemes for ODEs finite difference methods for partial differential equations (transport, Poisson, heat, wave equation) conforming finite element methods for elliptic PDEs (Galerkin method, convergence)
Duration	1 semester
Language	English
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	6
Work Load	4 h lectures plus 2 h post-processing per week = 90 h; 2 h discussion sections plus 3 h preparation/post-processing = 75 h; 15 h preparation for exam, in total: 180 h
Recommended Prerequisites	Introduction to Numerical Mathematics, Higher Skills in Numerical Mathematics; helpful but not required: Introduction to Ordinary Differential Equations, Introduction to Advanced Analysis
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every year during winter term
Can also be used as	module B-MP or C1 in bachelor Mathematics and module A1 in master Mathematics

1.2 Elective Modules A2: Advanced Topics in Numerical Mathematics

Module Label Module Type Lecture Area of Research Numerical Mathematics Chairs of Applied and Numerical Analysis, Scientific Computing • Understanding the way numerical algorithms for the solution of special partial different equations work • Ability to choose a suitable discretization technique for a given partial differential equations with the choose a suitable algorithm • Ability to implement the algorithms discussed in the lecture in a higher programming language
Area of Research Responsible Chairs of Applied and Numerical Analysis, Scientific Computing - Understanding the way numerical algorithms for the solution of special partial different equations work - Ability to choose a suitable discretization technique for a given partial differential equations work - Ability to choose a suitable algorithm - Ability to implement the algorithms discussed in the lecture in a higher programming language
Chairs of Applied and Numerical Analysis, Scientific Computing Understanding the way numerical algorithms for the solution of special partial different equations work Ability to choose a suitable discretization technique for a given partial differential equations. Ability to choose a suitable algorithm Ability to implement the algorithms discussed in the lecture in a higher programming language.
Understanding the way numerical algorithms for the solution of special partial different equations work Ability to choose a suitable discretization technique for a given partial differential equations. Ability to choose a suitable algorithm Ability to implement the algorithms discussed in the lecture in a higher programming language.
 equations work Ability to choose a suitable discretization technique for a given partial differential equal Ability to choose a suitable algorithm Ability to implement the algorithms discussed in the lecture in a higher programming language
 Ability to choose a suitable algorithm Ability to implement the algorithms discussed in the lecture in a higher programming language
Ability to implement the algorithms discussed in the lecture in a higher programming language
language
In contrast to students who have passed bachelor module C1, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content This module is the continuation of the module A1: Numerical Methods for Differential Equations It is focused on the numerical solution of more general types of partial differential equations arising from realistic applications such as fluid dynamics, electromagnetism, structural mechanics, etc. These require special discretization techniques:
non-conforming and mixed finite element methods
finite element methods for (Navier-)Stokes equations
finite volume methods
edge elements
Special topics:
• adaptivity
smoothed particle hydrodynamics
mortar methods
level-set methods
Duration 1 semester
Language English
Teaching Method Lectures (4 h/week) and tutorials (2 h/week)
Credit Points 8
Work Load 4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam, in total: 240 h
Recommended Prerequisites A1: Numerical Methods for Differential Equations
Grading Oral or written exam; active participation in the tutorials
Frequency Every two years
Can also be used as module A1 in master Mathematics

Title	Discontinuous Galerkin Finite Element Methods
Module Label	A2.2
Module Type	Lecture
Area of Research	Numerical Mathematics
Responsible	Chair of Scientific Computing
Learning Outcomes	 Understanding of important analysis techniques for Sobolev spaces and their modifications for discontinuous approximation spaces Ability to choose and apply a suitable discontinuous Galerkin discretization for standard linear and nonlinear advection–diffusion problems Ability to implement various types of discontinuous Galerkin discretizations in 1D and 2D using a programming language
Content	This course introduces the DG methods for hyperbolic and parabolic partial differential equations (PDEs) and systems of PDEs; it includes formulations for one- and multi-dimensional domains, for linear and nonlinear equations, and considers the stability and convergence analysis for these formulations. Also more advanced topics such as hybridized and ADER-DG methods as well as Riemann problems and their solution constitute a subject of this course.
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	2 h lectures plus 1,5 h post-processing per week = 52,5 h; 1 h discussion sections plus 2,5 h preparation/post-processing = 52,5 h; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	A1: Numerical Methods for Differential Equations, B1: Applied Functional Analysis
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every year
Can also be used as	module B1 in master Mathematics

Title	Constructive Approximation Methods
Module Label	A2.3
Module Type	Lecture
Area of Research	Advanced Analysis and Applications / Numerical Mathematics
Responsible	Chair of Applied and Numerical Analysis
Learning Outcomes	By the end of the course, a successful student should be able to
	explain the most important concepts of modern, multivariate approximation methods
	 explain the problems inherent to the reconstruction of multivariate functions from scattered data
	 prove and analyse the existence, the uniqueness, the computability and the quality of discrete reconstruction techniques
	explain and implement the associated numerical schemes
	understand the underlying mathematical theory
	In contrast to students who have passed bachelor module C1, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	Jackson- and Bernstein theorems for classical univariate polynomial approximation
	 Multivariate reconstruction methods based upon radial basis functions, moving least-squares and partition of unity methods
	Error and stability analysis of multivariate reconstruction methods
	Development and implementation of efficient algorithms for such reconstruction methods
	Optimal recovery for generalised interpolation with application to solving partial differential equations
Duration	1 semester
Language	English
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	8
Work Load	4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam, in total: 240 h
Recommended Prerequisites	Introduction to Advanced Analysis, Introduction to Numerical Mathematics
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every two years
Can also be used as	module B-MP or C1 in bachelor Mathematics and module A1 in master Mathematics

Title	Mathematical Control Theory
Module Label	A2.4
Module Type	Lecture
Area of Research	Optimization / Advanced Analysis and Applications
Responsible	Chair of Applied Mathematics
Learning Outcomes	
	knowledge of methods and concepts of mathematical control theory
	ability to solve selected problems from mathematical control theory
	ability to apply these solution strategies to practical problem formulations
	In contrast to students who have passed bachelor module C1, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	
	definition and classification of control systems
	qualitative analysis of control systems
	methods for controller design, e.g.
	 methods from linear algebra
	methods from optimal control
	 methods based on Lyapunov functions
Duration	1 semester
Language	English
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	8
Work Load	4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam, in total: 240 h
Recommended Prerequisites	Introduction to Numerical Mathematics, A1: Numerical Methods for Differential Equations
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every two years
Can also be used as	module A1 in master Mathematics

Title	Nonlinear Optimization
Module Label	A2.5
Module Type	Lecture
Area of Research	Optimization
Responsible	Chairs of Applied Mathematics, Scientific Computing
Learning Outcomes	
	understanding of optimatlity conditions for nonlinear optimization
	 understanding of the most important algorithms for the numerical solution of nonlinear optimization problems
	 ability to model and solve given practical problems in nonlinear optimization
	ability to use and develop software for nonlinear optimzation
	In contrast to students who have passed bachelor module C1, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	
	modeling of nonlinear optimization problems
	advanced algorithms for unconstrained optimization
	optimality conditions for nonlinear optimization problems
	algorithms for constrained optimization
	outlook on further problem classes
Duration	1 semester
Language	English
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	8
Work Load	4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam, in total: 240 h
Recommended Prerequisites	Introduction to Numerical Mathematics, Higher Skills in Numerical Mathematics
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every two years
Can also be used as	module B-MP or C1 in bachelor Mathematics and module A1 in master Mathematics

Title	Optimization of Differential Equations
Module Label	A2.6
Module Type	Lecture
Area of Research	Numerical Mathematics / Optimization
Responsible	Chairs of Applied Mathematics, Scientific Computing
Learning Outcomes	ability to derive and analyse optimality conditions
	ability to apply theory to concrete applications
	ability to solve the arising problems numerically
	In contrast to students who have passed bachelor module C1, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	Introductory examples and concepts
	General existence theory and first order optimality conditions
	Linear-quadratic problems
	Introduction to some non-linear problems
	Basic numerical methods
	Examples from applications
Duration	1 semester
Language	English
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	8
Work Load	4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam, in total: 240 h
Recommended Prerequisites	B1: Applied Functional Analysis, A1: Numerical Methods for Differential Equations
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every two years
Can also be used as	module A1 in master Mathematics

2 Module Section B: Modeling and Simulation

2.1 Module B1: Applied Functional Analysis

Title	Applied Functional Analysis
Module Label	B1
Module Type	Lecture
Area of Research	Partial Differential Equations
Responsible	Chairs of Applied and Numerical Analysis, Applied Mathematics, Scientific Computing, Nonlinear Analysis and Mathematical Physics
Learning Outcomes	This module lays ground to many modules of this programme. It should be attended during the first semester. By the end of the course, a successful student should
	 know the basic solution spaces and understand their uses in the theory of partial differential equations;
	master the concept of a weak solution;
	be able to apply functional analysis methods to problems in partial differential equations;
	 understand how functional analysis concepts develop out of applications.
	In contrast to students who have passed bachelor module C1, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	Basic solution spaces and methods from functional analysis which are used for analysing partial differential equations, in particular
	Sobolev spaces, embedding theorems
	weak solutions of elliptic equations, Lax-Milgram lemma, Fredholm alternative
	regularity of weak solutions of elliptic equations
	spectral theory for compact operators
Duration	1 semester
Language	English
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	8
Work Load	4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam, in total: 240 h
Recommended Prerequisites	Introduction to Advanced Analysis
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every year during winter term
Can also be used as	module B-MP or C1 in bachelor Mathematics and module A1 in master Mathematics

2.2 Elective Modules B2: Modeling and Simulation

Module Label B2.1 Module Type Lecture Area of Research Partial Differential Equations Responsible Chair of Nonlinear Analysis and Mathematical Physics Learning Outcomes By the end of the course, a successful student should • understand the origin of the treated equations in the modeling process; • know fundamental results on existence and uniqueness of their solutions;
Area of Research Partial Differential Equations Responsible Chair of Nonlinear Analysis and Mathematical Physics Learning Outcomes By the end of the course, a successful student should • understand the origin of the treated equations in the modeling process;
Responsible Chair of Nonlinear Analysis and Mathematical Physics Learning Outcomes By the end of the course, a successful student should • understand the origin of the treated equations in the modeling process;
Learning Outcomes By the end of the course, a successful student should • understand the origin of the treated equations in the modeling process;
understand the origin of the treated equations in the modeling process;
know fundamental results on existence and uniqueness of their solutions;
 understand qualitative properties of their solutions;
master key methods of their analysis.
In contrast to students who have passed bachelor module C1, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content Existence, uniqueness, and properties of solutions for integral equations and for various type partial differential equations that are eminent for modeling in the sciences, in particular
parabolic equations
wave equations and symmetric hyperbolic systems
Schrödinger equations
integral operators related to elliptic equations
Duration 1 semester
Language English
Teaching Method Lectures (4 h/week) and tutorials (2 h/week)
Credit Points 8
Work Load 4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam, in total: 240 h
Recommended Introduction to Advanced Analysis, B1: Applied Functional Analysis Prerequisites
Grading Oral or written exam; active participation in the tutorials
Frequency Every two years
Can also be used as module A1 in master Mathematics

Title	Modeling with Differential Equations
Module Label	B2.2
Module Type	Lecture
Area of Research	Partial Differential Equations
Responsible	Chairs of Applied Mathematics, Scientific Computing
Learning Outcomes	Ability to identify suitable mathematical models for a given application
	Knowledge about important modeling principles
	Ability to apply modeling techniques to basic practical applications
	In contrast to students who have passed bachelor module C1, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	General modeling principles
	Mathematical Models based on Ordinary Differential Equations from, e.g.,
	Mathematical Biology
	- Mechanics
	Mathematical Models based on Partial Differential Equations from, e.g.,
	Mathematical Physics
	Mathematical Finance
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	2 h lectures plus 1.5 h post-processing per week = 52.5 h; 1 h discussion sections plus 2.5 h preparation/post-processing = 52.5 h; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	B1: Applied Functional Analysis, A1: Numerical Methods for Differential Equations
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every year
Can also be used as	module B1 in master Mathematics

Title	Mathematical Modeling for Climate and Environment
Module Label	B2.3
Module Type	Lecture
Area of Research	Partial Differential Equations
Responsible	Chair of Scientific Computing
Learning Outcomes	Knowledge of important physical principles and their representation in mathematical models for main types of climate and environmental models
	Ability to identify the key interactions between different compartments of a climate model and to express them in mathematical form
	Ability to formulate simple environmental and climate models and skills to implement them using e.g. Matlab
Content	Physical principles, mathematical models, and selected numerical methods in climate and environmental sciences
	Earth system: Main components, driving forces, scales, feedbacks
	Hierarchy of climate models, regional and global focus
	Environmental modeling: Main applications and problem settings
Duration	1 semester
Language	English
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	8
Work Load	4 h lectures plus 2 h post-processing per week = 90 h; 120 h practical course; 30 h preparation for exam; in total: 240 h
Recommended Prerequisites	B1: Applied Functional Analysis, A1: Numerical Methods for Differential Equations, basic programming skills in Matlab
Grading	Oral exam; active participation in the tutorials
Frequency	Once per year, summer term
Can also be used as	module A1 in master Mathematics

Title	Pattern Recognition
Module Label	B2.4
Module Type	Lecture
Area of Research	Computer Science
Responsible	Chair of Applied Computer Science III
Learning Outcomes	This course imparts advanced, systematic comprehension and methods to recognize or classify patterns in a set of data. E. g. applications are in the fields of object recognition, recognition of hand writing, speech, or gestures, and facial recognition.
Content	Bayesian classification, Parameter estimation, Nonparametric techniques, Linear classification, Feedforward neural networks, Feedback neural networks, Nonmetric methods, Supervised Learn- ing, Unsupervised Learning
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	2 h lectures plus 1 h post-processing per week = 45 h; 60 h practical course; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	none
Grading	Oral exam
Frequency	Once per year, winter term
Can also be used as	

Title	Mechanics of Continua
Module Label	B2.5
Module Type	Lecture
Area of Research	Fluid Mechanics
Responsible	Theoretical Physics
Learning Outcomes	 Understand fundamental concepts of continuum mechanics such as stress tensors, dynamic equations Assess which physical effects are relevant/irrelevant for a given situation Propose a theoretical description and solution approach for a given continuum mechanical problem
Content	 Fundamental concepts in fluid mechanics: pressure, stress tensor Euler, Stokes and Navier-Stokes equations Dimensionless numbers Applications to Turbulence Microfluids
Duration	1 semester
Language	German / English on demand
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	8
Work Load	4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam; in total: 240 h
Recommended Prerequisites	Understanding of classical Newtonian mechanics
Grading	Oral or written exam
Frequency	Every year
Can also be used as	

Title	Molecular Dynamics Simulations of Biophysical Systems
Module Label	B2.6
Module Type	Lecture
Area of Research	Physics
Responsible	Biofluid Simulation and Modeling
Learning Outcomes	 Understanding of the theoretical background in biophysical simulations Practical application to example problems, e.g. protein folding
Content	Molecular Dynamics computer simulations have become an invaluable tool in many areas of the natural sciences. Their widespread applications range from protein folding and membrane dynamics in biological physics, solute-solvent interactions in theoretical chemistry to nanofluidics in process engineering. The aim of this course is (i) to understand the physics behind frequently employed simulation methods and (ii) to gain practical experience in using these methods for a range of sample prob-lems. We will start by considering the basic ingredients for atomistic simulations such as Verlet integration, force fields, long-range electrostatistic interactions, thermostating, etc. We will then move on to cover more advanced topics such as free energy methods and sampling techniques for rare events. Finally, we will discuss systematic coarse-graining methods which allow the simulation of larger and more complicated processes, e.g. the unfolding of a protein in shear flow. The course includes a lab part in which actual simulations with the GROMACS package are conducted.
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and additional practical project
Credit Points	4
Work Load	2 h lectures plus 2 h post-processing per week = 60 h; Practical project = 40 h; 20 h preparation for exam; in total: 120 h
Recommended Prerequisites	Knowledge of statistical mechanics is helpful
Grading	Oral or written exam
Frequency	Approximately every two years
Can also be used as	

Title	Bioinformatics: Molecular Modeling
Module Label	B2.7
Module Type	Lecture with practical course
Area of Research	Biochemistry
Responsible	Bioinformatics / Structural Biology
Learning Outcomes	Knowledge on modeling and analysis of biomolecular processes such as enzymatic reactions In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	The lecture treats the theoretical foundations of molecular modeling (molecular force fields, biomolecular electrostatics, classical and statistical mechanics), their numerical designs (molecular dynamics simulations, energy minimization and normal mode analysis, Monte Carlo simulations), fundamentals quantum chemical methods as well as the modeling of biochemical reactions and ligand binding. In the practical course, various techniques (including analysis of biomolecular structures, computation of electrostatic properties of biomolecules, normal-mode analysis) will be exemplified by selected case studies to provide students with practical demonstrations of these methods.
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and practical course (3 weeks)
Credit Points	4
Work Load	2 h lectures plus 1 h post-processing per week = 45 h; 60 h practical course; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	Basic knowledge of chemistry and some biochemistry
Grading	Oral or written exam; active participation in the practical course
Frequency	Every year during winter term
Can also be used as	

Title	Foundations of Bioinformatics
Module Label	B2.8
Module Type	Lecture with practical course
Area of Research	Biochemistry
Responsible	Bioinformatics / Structural Biology
Learning Outcomes	Students should acquire the basics of bioinformatics and get to know them in theory and practice. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	The lecture covers the basic bioinformatic applications. Namely, the application of various theoretical methods in the analysis of molecular biological data in the foreground (databases and database search, sequences and sequence alignments, phylogenetic trees) as well as fundamentals of molecular modeling, structure prediction and drug design. In the practical course, the students have hands-on sessions for the different methods, the use of internet tools for sequence data analysis, web-based databases and creation of sequence alignments. Moreover some basic introduction to molecular visualization and an introduction to the UNIX operating system are provided.
Duration	1 semester
Language	German
Teaching Method	Lectures (2 h/week) and practical course (3 h/week)
Credit Points	4
Work Load	2 h lectures plus 2 h post-processing per week = 60 h 3 h practical course = 45 h; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	Basic knowledge of chemistry and some biochemistry
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every year during summer term
Can also be used as	

Title	Higher Strengths of Materials
Module Label	B2.9
Module Type	Lecture
Area of Research	Engineering Science
Responsible	Chair of Design and CAD
Learning Outcomes	The module enables the students to calculate complex technical products by use of linear elasticity approach. It deepens the knowledge in the area of strengths of materials calculation. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	Selected subjects in higher strengths of materials area, e.g. multiaxial stress and deformation, theories of thin shells, mechanical vibrations with relation to typical applications.
Duration	1 semester
Language	German
Teaching Method	Lectures (2 h/week) and tutorials (2 h/week)
Credit Points	4
Work Load	2 h lectures plus 1.5 h post-processing per week = 52.5 h; 2 h discussion sections plus 1.5 h preparation/post-processing = 52.5 h; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	Basic engineering knowledge funding on Bachelor Engineering Science studies, especially in technical mechanics and strengths of materials.
Grading	Written examination (60 min)
Frequency	Every year
Can also be used as	

Title	Computer Aided Engineering
Module Label	B2.10
Module Type	Lecture
Area of Research	Engineering Science
Responsible	Chair of Design and CAD
Learning Outcomes	CAE1: ability to create CAD models and generate design proposals using optimization algorithms. CAE2: mastery of modern methods of calculation of statics and their application to constructive tasks; knowledge of associated software In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	CAE1: mastery of modern calculation methods and their application to constructive tasks; knowledge of associated software. Ability to design independently using CAD. CAE2: theory and application of finite element methods to static problems with a focus on the constructive point of view and modeling.
Duration	2 semesters
Language	English
Teaching Method	CAE1: lectures (2 h/week) and CAE2: seminar (2 h/week)
Credit Points	4
Work Load	2 h lectures plus 1.5 h post-processing per week = 52.5 h; 2 h seminar plus 1.5 h preparation/post-processing = 52.5 h; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	Basic technical understanding A1: Numerical Methods for Differential Equations
Grading	Written examination; For the admission to the written exam a vivid participation in the exercises is required.
Frequency	Every year
Can also be used as	

Title	Model Building and Simulation of Mechanical Systems
Module Label	B2.11
Module Type	Lecture
Area of Research	Engineering Science
Responsible	Chair of Design and CAD
Learning Outcomes	The industrial standard CAD software CATIA enables students to create virtual models of products. The course Higher Finite Element Analysis enables students to build-up models for the dimensioning of complex technical products by use of sophisticated Finite Element Analysis methods. The knowledge is used in wide areas of advanced product development. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	FEA: Handling of great and complex structures, use of shell and volume elements. Solving non-linearity, vibration and heat transfer problems. CATIA: Part and assembly creation; generation of technical drawings; surface modeling with Generative Shape Design.
Duration	2 semesters
Language	German
Teaching Method	FEA: lectures (2 h/week), seminar (1 h/week) and CATIA: seminar (2 h/week)
Credit Points	6
Work Load	FEA: 45 h lecture + follow up work 45 h seminars + preparation and follow-up work CATIA: 60 h seminars + preparation and follow-up work Examination: 30 h examination preparation; Module in total: 180 hours
Recommended Prerequisites	Basic engineering knowledge funding on Bachelor Engineering Science studies, especially in technical mechanics, construction design and mechanical engineering
Grading	Written examination (120 min)
Frequency	Every year
Can also be used as	

Title	Foundations of Data Management
Module Label	B2.12
Module Type	Lecture
Area of Research	Data Management, Data Science
Responsible	Chair of Theoretical Computer Science
Learning Outcomes	Students will learn the mathematical foundations of data management (which includes databases and data science). They will understand the connections between logic, expressivity, computational complexity, and efficient algorithms in this area. They will learn the formal tools to be able to understand and interpret recent scientific developments in the area.
Content	The lecture starts with formal definitions of databases and query languages. After showing that there is a deep connection between first-order logic and SQL when it comes to querying relational databases, it investigates the computational complexity (or efficient algorithms) for evaluating and analyzing SQL or first-order logic queries on databases. We then investigate conjunctive queries as a practically relevant special case, treat their evaluation and optimization problems, and connections with graph theory. (Knowledge of SQL is helpful but is not required.)
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	2 h lectures plus 1.5 h post-processing per week = 52.5 h; 1 h exercises plus 1 h post-processing per week = 30 h; 37.5 h preperation for the exam; in total: 120 h
Recommended Prerequisites	Theoretische Informatik 1 or mathematical skills equivalent to those obtained in a BSc degree in mathematics or physics
Grading	Oral or written exam; participation in the tutorials
Frequency	Every year
Can also be used as	

2.3 Module B3: Industrial Internship

Title	Industrial Internship
Module Label	В3
Module Type	Internship
Area of Research	Scientific Computing
Responsible	Chair of Scientific Computing
Learning Outcomes	By the end of the internship, a successful student should have
	gained hands-on experience in a non-academic environment
	 applied mathematical techniques and techniques from computer science to real applications
	acquired new ideas for his/her own research
	written a short report
Content	Industrial applications in the area of Scientific Computing
Duration	6 weeks
Language	English
Teaching Method	Practical course
Credit Points	8
Work Load	6 weeks of internship = 230 h 10 h preparation of report; in total: 240 h
Recommended Prerequisites	Basic lectures of this programme (after first year)
Grading	Written report of at least 10 pages (to be submitted not later than 4 weeks after the internship)
Frequency	Every semester
Can also be used as	

2.4 Module B4: Modeling and Status Seminar

Title	Modeling and Status Seminar
Module Label	B4
Module Type	Seminar
Area of Research	All areas
Responsible	Chair of Scientific Computing
Learning Outcomes	Successful students can
	Modeling and numerical solution: transfer real-world problems to a mathematical model pave their way into a scientific topic; work in small groups select suitable efficient numerical methods and implement them on parallel computers
	Talk: choose and master suitable presentation techniques speak freely about a subject and illustrate important structures instructively answer spontaneous questions from the audience in a reliable manner
	Discussion: phrase appropriate subject-specific questions express constructive criticism for a talk exploit constructive criticism for their future talks
	Handout: expose an advanced mathematical subject briefly, concisely, and memorably in writing efficient usage of scientific publication systems (e.g., LATEX)
Content	Modeling Seminar:
	Students receive real-world projects and work (in small groups) their way into them
	 Each group prepares a presentation for its subject (duration: 30–60 minutes) and talks about it in front of the plenum
	• Each group prepares and distributes a report (at least 10 pages) using a scientific text system (e.g., LATEX)
	Status Seminar:
	 Each student prepares a presentation on the status of his/her studies and results of his/her research (duration: 15–30 minutes) and talks about it in front of the plenum
	For both seminars there will be a discussion on the subject and on the presentation.
Duration	4 semesters
Language	English
Teaching Method	Modeling seminar (1 week) and status seminar (2 days) each year
Credit Points	8
Work Load	70 h practical course and 30 h seminar each year = 200 h 40 h preparation/post-processing for seminar, in total: 240 h
Recommended Prerequisites	At least one module of A2 and D1, respectively; C2: Practical Course on Parallel Numerical Methods
Grading	Oral presentation and written report of at least 10 pages (to be submitted not later than 4 wear after the seminar)
Frequency	Each year (modeling seminar during summer break, status seminar during winter break)
Can also be used as	

3 Module Section C: High-Performance Computing

3.1 Elective Modules C1: High-Performance Computing

Title	Algorithms and Data Structures II
Module Label	C1.1
Module Type	Lecture
Area of Research	Computer Science
Responsible	Chair of Algorithms and Data Structures
Learning Outcomes	This module teaches advanced techniques for the design and analysis of algorithms and data structures. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	Possible topics are:
	design principles
	graph algorithms
	advanced data structures
	approximation algorithms
	parameterized algorithms
	randomized algorithms
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	8
Work Load	4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam; in total: 240 h
Recommended Prerequisites	Elementary programming skills, Basic skills in the design and analysis of algorithms.
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every year
Can also be used as	

Title	Algorithms and Data Structures III
Module Label	C1.2
Module Type	Lecture
Area of Research	Computer Science
Responsible	Chair of Algorithms and Data Structures
Learning Outcomes	This module teaches specialized techniques for the design and analysis of algorithms and data structures In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	Possible topics are:
	geometric algorithms
	algorithms for data analysis
	streaming algorithms
	external-memory algorithms
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	2 h lectures plus 1.5 h post-processing per week = 52.5 h; 1 h discussion sections plus 2.5 h preparation/post-processing = 52.5 h; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	Advanced programming skills, Advanced skills in the design and analysis of algorithms
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every year
Can also be used as	

Title	Parallel and Distributed Systems I
Module Label	C1.3
Module Type	Lecture
Area of Research	Computer Science
Responsible	Chair of Parallel and Distributed Systems
Learning Outcomes	The goal of this course is to impart to the students basic techniques in parallel and distributed programming. By that, special methodical competences are acquired: By understanding basic problems such as load balancing and scalability and by learning synchronization and communication techniques, the students are enabled to design and, with the help of communication and thread libraries, to transform parallel algorithms into efficient parallel and distributed programs. By that, both shared and distributed address spaces are acquired. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	Architecture and interconnection networks for parallel systems
	Performance analysis and scalability of parallel programs
	Programming and synchronization techniques for shared address space with multi-threading
	Coordination of parallel and distributed programs
	Application of programming techniques to complex examples from different areas
	 Programming techniques for distributed address spaces and message-passing
Duration	1 semester
Language	German
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam)
Recommended Prerequisites	
Grading	Written exam; For the admission to the written exam a vivid participation in the exercises is required.
Frequency	Every year in winter term
Can also be used as	

Module Label Computer Science Area of Research Responsible Chair of Parallel and Distributed Systems The goal of this course is to give the students a deep understanding of important techniques in parallel and distributed programming. The emphasis lies on the acquiring of methodical and technical competences. Based on a deep understanding of standard protocols for computer networks such as 1P or TCP/IDP, the students are enabled to design and implement distributed programs. The course covers message-passing approaches such as MPI, passiv communication mechanisms such as sockets, and also active mechanisms such as RPC, RMI, or CORBA. The course also imparts design and implementation competences by applying the techniques to a variety of examples. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills. Content Content The course covers the basics of parallel and distributed systems with an emphasis on distributed systems. Based on the first part of the course, the following topics are covered: • Message-Passing programming (MPI) • Important communication protocols in distributed systems • Communication coordination and synchronization mechanisms in distributed systems (examples: Sockets, RPC, Java RMI) • Coordination with distributed objects (example: CORBA) • Security aspects and mechanisms in distributed systems Duration 1 semester Language German Teaching Method Lectures (2 h/week) and tutorials (1 h/week) Credit Points Work Load 120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam) Recommended Prerequisites Grading Written exam; For the admission to the written exam a vivid participation in the exercises is required. Every year in summer term	Title	Parallel and Distributed Systems II
Area of Research Responsible Chair of Parallel and Distributed Systems The goal of this course is to give the students a deep understanding of important techniques in parallel and distributed programming. The emphasis lies on the acquiring of methodical and technical competences. Based on a deep understanding of standard protocols for computer networks such as IP or TCP/IDP, the students are enabled to design and implement distributed programs. The course covers message-passing approaches such as MPI, passiv communication mechanisms such as sockets, and also active mechanisms such as RPC, RMI, or CORBA. The course also imparts design and implementation competences by applying the techniques to a variety of examples. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills. Content **Content** Content** The course covers the basics of parallel and distributed systems with an emphasis on distributed systems. Based on the first part of the course, the following topics are covered: **Message-Passing programming (MPI)** Important communication protocols in distributed systems **Communication coordination and synchronization mechanisms in distributed systems (examples: Sockets, RPC, Java RMI)* **Coordination with distributed objects (example: CORBA)* **Security aspects and mechanisms in distributed systems **Duration** Duration** 1 semester **Language** **Duration** Language** Teaching Method** Credit Points** 4 Work Load** 120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam)* Recommended Prerequisites Grading** Written exam; For the admission to the written exam a vivid participation in the exercises is required. Every year in summer term	Module Label	
Area of Research Responsible Chair of Parallel and Distributed Systems Learning Outcomes The goal of this course is to give the students a deep understanding of important techniques in parallel and distributed programming. The emphasis lies on the acquiring of methodical and technical completeness. Based on a deep understanding of standard protocols for computer networks such as IP or TCP/IDP. the students are enabled to design and implement distributed programs. The course covers message-passing approaches such as MPI, passiv communication mechanisms such as sockets, and also active mechanisms such as RPC, RMI, or CORBA. The course also imparts design and implementation competences by applying the techniques to a variety of examples. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills. Content The course covers the basics of parallel and distributed systems with an emphasis on distributed systems. Based on the first part of the course, the following topics are covered: Message-Passing programming (MPI) Important communication protocols in distributed systems Communication coordination and synchronization mechanisms in distributed systems (examples: Sockets, RPC, Java RMI) Coordination with distributed objects (example: CORBA) Security aspects and mechanisms in distributed systems Duration 1 semester Language German Teaching Method Credit Points 4 Work Load C1.3: Parallel and Distributed Systems I Written exam; For the admission to the written exam a vivid participation in the exercises is required. Every year in summer term		
The goal of this course is to give the students a deep understanding of important techniques in parallel and distributed programming. The emphasis lies on the acquiring of methodical and technical competences. Based on a deep understanding of standard protocols for computer networks such as IP or TCP/TUP, the students are enabled to design and implement distributed programs. The course covers message-passing approaches such as MPI, passiv communication mechanisms such as sockets, and also active mechanisms such as RPC, RMI, or CORBA. The course also imparts design and implementation competences by applying the techniques to a variety of examples. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills. Content The course covers the basics of parallel and distributed systems with an emphasis on distributed systems. Based on the first part of the course, the following topics are covered: Message-Passing programming (MPI) Important communication protocols in distributed systems Communication coordination and synchronization mechanisms in distributed systems (examples: Sockets, RPC, Java RMI) Coordination with distributed objects (example: CORBA) Security aspects and mechanisms in distributed systems Duration 1 semester Language German Teaching Method Credit Points 4 Work Load 120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam) Recommended Prerequisites Grading Written exam; For the admission to the written exam a vivid participation in the exercises is required. Every year in summer term		
The goal of this course is to give the students a deep understanding of important techniques in parallel and distributed programming. The emphasis lies on the acquiring of methodical and technical competences. Based on a deep understanding of standard protocols for computer networks such as IP or TCP/TUP, the students are enabled to design and implement distributed programs. The course covers message-passing approaches such as MPI, passiv communication mechanisms such as sockets, and also active mechanisms such as RPC, RIMI, or CORBA. The course also imparts design and implementation competences by applying the techniques to a variety of examples. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills. **Content** **Content** **Content** **The course covers the basics of parallel and distributed systems with an emphasis on distributed systems. Based on the first part of the course, the following topics are covered: **Message-Passing programming (MPI)** **Important communication protocols in distributed systems **Communication coordination and synchronization mechanisms in distributed systems (examples: Sockets, RPC, Java RMI)* **Coordination with distributed objects (example: CORBA)* **Security aspects and mechanisms in distributed systems **Duration** **Duration** **Duration** **Duration** **Language** **German** **Teaching Method** **Language** **German** **Teaching Method** **Location (21.3: Parallel and Distributed Systems I)* **Work Load** **Teaching Method** **Co.: 21.3: Parallel and Distributed Systems I)* **Work Load** **Grading** **Written exam; For the admission to the written exam a vivid participation in the exercises is required.** **Every year in summer term**		
parallel and distributed programming. The emphasis lies on the acquiring of methodical and technical competences. Based on a deep understanding of standard protocols for computer networks such as IP or TCP/IUDP, the students are enabled to design and implement distributed programs. The course covers message-passing approaches such as MPI, passiv communication mechanisms such as sockets, and also active mechanisms such as RPC, RMI, or CORBA. The course also imparts design and implementation competences by applying the techniques to a variety of examples. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills. **Content** The course covers the basics of parallel and distributed systems with an emphasis on distributed systems. Based on the first part of the course, the following topics are covered: Message-Passing programming (MPI) Important communication protocols in distributed systems Communication coordination and synchronization mechanisms in distributed systems (examples: Sockets, RPC, Java RMI) Coordination with distributed objects (example: CORBA) Security aspects and mechanisms in distributed systems **Duration** 1 semester* **Language** German** Lectures (2h/week) and tutorials (1 h/week) **Credit Points** **Work Load** Teaching Method** Credit Points* **Work Load** Teaching Method** C1.3: Parallel and Distributed Systems I **Work Load** Written exam; For the admission to the written exam a vivid participation in the exercises is required. **Frequency** Frequency** Every year in summer term*	·	<u>.</u>
systems. Based on the first part of the course, the following topics are covered: • Message-Passing programming (MPI) • Important communication protocols in distributed systems • Communication coordination and synchronization mechanisms in distributed systems (examples: Sockets, RPC, Java RMI) • Coordination with distributed objects (example: CORBA) • Security aspects and mechanisms in distributed systems Duration 1 semester Language German Teaching Method Lectures (2 h/week) and tutorials (1 h/week) Credit Points 4 Work Load 120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam) Recommended Prerequisites Grading Written exam; For the admission to the written exam a vivid participation in the exercises is required. Frequency Every year in summer term	Learning Outcomes	parallel and distributed programming. The emphasis lies on the acquiring of methodical and technical competences. Based on a deep understanding of standard protocols for computer networks such as IP or TCP/UDP, the students are enabled to design and implement distributed programs. The course covers message-passing approaches such as MPI, passiv communication mechanisms such as sockets, and also active mechanisms such as RPC, RMI, or CORBA. The course also imparts design and implementation competences by applying the techniques to a variety of examples. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly
Duration 1 semester Language German Teaching Method Lectures (2 h/week) and tutorials (1 h/week) Credit Points 4 Work Load 120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam) Recommended Prerequisites Grading Written exam; For the admission to the written exam a vivid participation in the exercises is required. Frequency Every year in summer term	Content	 systems. Based on the first part of the course, the following topics are covered: Message-Passing programming (MPI) Important communication protocols in distributed systems Communication coordination and synchronization mechanisms in distributed systems (examples: Sockets, RPC, Java RMI)
Language German Teaching Method Lectures (2 h/week) and tutorials (1 h/week) Credit Points 4 Work Load 120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam) Recommended Prerequisites Grading Written exam; For the admission to the written exam a vivid participation in the exercises is required. Frequency Every year in summer term		
Teaching Method Lectures (2 h/week) and tutorials (1 h/week) Credit Points 4 Work Load 120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam) Recommended Prerequisites Grading Written exam; For the admission to the written exam a vivid participation in the exercises is required. Frequency Every year in summer term	Duration	1 semester
Credit Points 4 Work Load 120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam) Recommended Prerequisites Grading Written exam; For the admission to the written exam a vivid participation in the exercises is required. Frequency Every year in summer term	Language	German
Work Load 120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam) Recommended Prerequisites Grading Written exam; For the admission to the written exam a vivid participation in the exercises is required. Frequency Every year in summer term	Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Recommended Prerequisites Grading Written exam; For the admission to the written exam a vivid participation in the exercises is required. Frequency Every year in summer term	Credit Points	4
Prerequisites Grading Written exam; For the admission to the written exam a vivid participation in the exercises is required. Frequency Every year in summer term	Work Load	120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam)
required. Frequency Every year in summer term		C1.3: Parallel and Distributed Systems I
	Grading	i · · ·
Can also be used as	Frequency	Every year in summer term
	Can also be used as	

Title	High-Performance Computing
Module Label	C1.5
Module Type	Lecture
Area of Research	Computer Science
Responsible	Chair of Parallel and Distributed Systems
Learning Outcomes	The goal of this course is to give the students a deep understanding of important techniques of program analysis and program transformation. The emphasis lies on the acquiring of analytical and technological competences: the students are enabled to analyse arbitrary programs by applying the techniques of data and control dependency analysis and to perform optimizing program transformation based on these analysis techniques. Examples are the vectorization and parallelization of program parts or optimization towards a given memory hierarchy. Methodical and algorithmis competences are acquired by learning scheduling and load balancing algorithms and the underlying principles. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	The following topics are covered:
	 Overview of current processor architectures and interconnection technologies
	 Control flow and data flow analysis, data flow equations and solution methods for data flow equations, optimizing transformations
	 Data dependency analysis, loop dependencies, data dependence equations and solution methods for them
	 Program transformations for vectorization, parallelization and cache optimization
	 Methods for scheduling and load balancing for instructions, loops, and tasks
	OpenMP programming
	Register allocation and program tranformations for reducing the register need of programs
	CPU programming with CUDA
Duration	1 semester
Language	English
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	8
Work Load	240 h in total (90 h presence, 150 h preparation/post-processing with processing of worksheets)
Recommended Prerequisites	C1.3: Parallel and Distributed Systems I
Grading	Written exam; For the admission to the written exam a vivid participation in the exercises is required.
Frequency	Every year in summer term
Can also be used as	

Title	Parallel Algorithms
Module Label	C1.6
Module Type	Lecture
Area of Research	Computer Science
Responsible	Chair of Parallel and Distributed Systems
Learning Outcomes	Students acquire in-depth knowledge about selected parallel algorithms from different fields of application. In particular, in connection with exercises, students gain analytical and methodological expertise, which empowers them to understand, implement, analyse, and design parallel algorithms. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	Selected parallel algorithms are presented. The range extends from basic, widespread algorithms (e.g., sorting) to complex algorithms from specific fields of application (e.g., computer graphics). Emphasis is put on algorithms from the field of scientific computing. The exercises cover theoretical problems as well as practical programming experience.
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam)
Recommended Prerequisites	Algorithms and Data Structures I, C1.3: Parallel and Distributed Systems I
Grading	Oral or written exam
Frequency	Every year in summer term
Can also be used as	

Title	Programming and Data Analysis in Python
Module Label	C1.7
Module Type	Lecture
Area of Research	Computer Science
Responsible	Chair of Serious Games
Learning Outcomes	Students learn to quickly prototype and implement numerical programs in Python. They learn Python as a programming language and a scientific computing environment. They acquire knowledge of the basic programming language, as well as of important libraries for scientific computing, such as NumPy, SciPy, Matplotlib, Pandas, and TensorFlow/Keras. They develop practical and applied skills in exploratory computing, rapid prototyping, and implementation of numerical methods. In contrast to other environments, the Python scientific computing environment is open source, widely used, optimized for programmer productivity, and benefits from a large community and library ecosystem.
Content	The Python programming language: Programming philosophy in Python, data types, control structures, functions, object-oriented programming, debugging. Algorithms: Basic algorithms (e.g., searching and sorting), bisection, recursion, dynamic programming, Newton's method. Matrix methods: Linear Algebra with NumPy, matrix factorizations, eigenvectors and values, diagonalization, SVD, least squares and pseudoinverse. Data analysis: Pandas, clustering, plotting. Neural networks and deep learning.
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (2 h/week)
Credit Points	4
Work Load	120 h in total (45 h presence, 60 h preparation/post-processing, 15 h preparation for exam)
Recommended Prerequisites	None
Grading	Oral or written exam (85%), exercises (15%)
Frequency	Every year in winter term
Can also be used as	

3.2 Module C2: Practical Course on Parallel Numerical Methods

Title	Parallel Numerical Methods
Module Label	C2
Module Type	Pratical course
Area of Research	Computer Science, Scientific Computing
Responsible	Chairs of Parallel and Distributed Systems, Scientific Computing
Learning Outcomes	 Implementation of parallel algorithms: select suitable efficient numerical methods choose data structures that are suitable for the respective problem implement the numerical methods on a parallel computer using standard libraries Presentation and discussion: choose and master suitable presentation techniques speak freely about a subject and illustrate important structures instructively answer spontaneous questions from the audience in a reliable manner
Content	In this practical course, students implement manageable numerical problems (such as Gaussian elimination, finite element discretization of 2d Laplacian, etc.) on parallel computers using the programming language C/C++ and standard software libraries (LAPACK/BLAS, OpenMP, OpenMPI). The resulting parallel efficiency is observed depending on the chosen implementation (naive or advanced such as Schwarz methods).
Duration	1 semester
Language	English
Teaching Method	Practical course (2 weeks)
Credit Points	2
Work Load	50 h practical course; 10 h preparation for exam; in total: 60 h
Recommended Prerequisites	A1: Numerical Methods for Differential Equations, C1.3: Parallel and Distributed Systems I, D1.1: Efficient Treatment of Non-local Operators
Grading	Implementation and presentation of approaches; active participation and discussion
Frequency	Every year at the end of the winter term
Can also be used as	

4 Module Section D: Scientific Computing

4.1 Elective Modules D1: Complexity Reduction

Title	Efficient Treatment of Non-local Operators
Module Label	D1.1
Module Type	Lecture
Area of Research	Scientific Computing
Responsible	Chair of Scientific Computing
Learning Outcomes	Understanding the way numerical algorithms for the solution of partial differential and integral equations work
	Understanding that non-local operators may contain redundancies which can be used to reduce their asymptotic complexity
	 Ability to choose a suitable algorithm for a given class of partial differential and integral equations
	Ability to implement the algorithms discussed in the lecture in a higher programming language on a parallel computer
Content	State-of-the-art linear complexity treatment of partial differential and integral operators and parallelization techniques:
	fast multipole methods for the efficient treatment of multi-source potentials (one of the TOP10 algorithms from the 20th century)
	hierarchical matrices (for the treatment of non-local operators with linear complexity)
	Schwarz methods (additive and multiplicative)
	BPX preconditioner
	 Domain decomposition (overlapping and non-overlapping), BPS and Neumann-Neumann preconditioners, FETI
Duration	1 semester
Language	English
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	8
Work Load	4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam; in total: 240 h
Recommended Prerequisites	
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every year
Can also be used as	module B-MP or C1 in bachelor Mathematics and module A1 in master Mathematics

Title	Fast Methods for Differential and Integral Equations
Module Label	D1.2
Module Type	Lecture
Area of Research	Scientific Computing
Responsible	Chair of Scientific Computing
Learning Outcomes	 Understanding the way numerical algorithms for the solution of partial differential and integral equations work Detection of suitable structures which can be exploited for the complexity reduction of solution operators of elliptic boundary value problems Ability to choose a suitable algorithm for a given class of partial differential or integral equations Ability to implement the algorithms discussed in the lecture in a higher programming language
Content	Numerical analysis of optimal complexity solvers for the treatment of boundary value problems; efficient treatment of parameter-dependent problems: • subspace correction methods • hierarchical bases and BPX preconditioners • geometric and algebraic multigrid methods (convergence and implementation aspects) • reduced bases methods • analysis of hierarchical matrices
Duration	1 semester
Language	English
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	8
Work Load	4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam; in total: 240 h
Recommended Prerequisites	A1: Numerical Methods for Differential Equations, B1: Applied Functional Analysis
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every year
Can also be used as	module A1 in master Mathematics

Title	Efficient Numerical Treatment of Multiscale Problems
Module Label	D1.3
Module Type	Lecture
Area of Research	Numerical Mathematics
Responsible	Chair of Scientific Computing
Learning Outcomes	Understanding of key mechanisms and challenges in scale interaction for the PDE-based equations and systems in scientific and technical problems
	Ability to identify and apply a suitable modeling and/or numerical technique for a wide range of multiscale problems
	Ability to implement the mathematical methods and numerical algorithms introduced in the course using a programming language
Content	Modeling approaches:
	asymptotic analysis
	homogenization
	Reynolds-averaged Navier-Stokes (RANS), large eddy simulation (LES)
	Numerical methods:
	multiscale finite element method (MsFEM)
	variational multiscale method
	wavelet-based discretizations
	reduced-basis methods
	heterogeneous multiscale methods (HMM)
Duration	1 semester
Language	English
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	8
Work Load	4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam; in total: 240 h
Recommended Prerequisites	A1: Numerical Methods for Differential Equations, B1: Applied Functional Analysis
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every two years
Can also be used as	module A1 in master Mathematics

Title	Numerical Methods for Uncertainty Quantification
Module Label	D1.4
Module Type	Lecture
Area of Research	Numerical Mathematics
Responsible	Chair of Scientific Computing
Learning Outcomes	
Content	This is a cutting-edge area of Scientific Computing. In addition to Monte Carlo methods, stochatic collocation, polyonomial chaos expansions, stochastic Galerkin methods, the Karhunen-Loève expansion, model order reduction, and multilevel quadrature recent developments in this area are to be discussed.
Duration	1 semester
Language	English
Teaching Method	Lectures (4 h/week) and tutorials (2 h/week)
Credit Points	4
Work Load	2 h lectures plus 3 h post-processing per week = 52,5 h; 1 h discussion sections plus 2,5 h preparation/post-processing = 52,5 h; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	A1: Numerical Methods for Differential Equations, B1: Applied Functional Analysis
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every year
Can also be used as	module B1 in master Mathematics

Title	High-dimensional Approximation
Module Label	D1.5
Module Type	Lecture
Area of Research	Numerical Mathematics
Responsible	Chairs of Applied and Numerical Analysis, Scientific Computing
Learning Outcomes	By the end of the course, a successful student should
	understand the curse of dimensionality
	know several concepts to reduce the complexity in high-dimensional problems
	be able to apply such concepts to typical examples from finance, physics and engineering
Content	 Introduction to problems from finance, physics and engineering leading to high-dimensional partial differential equations, such as Black-Scholes and Fokker-Planck Modern concepts for high-dimensional problems including tensor product methods, sparse grids, kernel-based methods, Monte-Carlo and Quasi-Monte-Carlo methods Error and stability analysis of such methods Efficient algorithms for and implementations of such methods
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	2 h lectures plus 1,5 h post-processing per week = 52,5 h; 1 h discussion sections plus 2,5 h preparation/post-processing = 52,5 h; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	A1: Numerical Methods for Differential Equations, B1: Applied Functional Analysis
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every two years
Can also be used as	module B1 in master Mathematics

Title	Data Analytics
Module Label	D1.6
Module Type	Lecture
Area of Research	Computer Science
Responsible	Chair for Databases and Information Systems
Learning Outcomes	Conceptual foundation of development of large databases (Big Data) and information systems with focus on modeling. Deepening of proficiency in databases in the context of large and complex database and web applications; imparting of interdisciplinary, analytical competences for reconstructing and modeling complex applications (mostly stemming from the application fields); technological competence for selecting and integrating heterogeneous modeling and implementation concepts for the design and realization of data and process based applications. Deepening of proficiency in the fields of data analytics. Realization of complex architectures in the application fields Bio Informatics, Environmental Informatics and Engineer Informatics will be discussed in all courses. In contrast to students who have passed the corresponding bachelor module, students of this modules can apply the previous techniques more autonomously and can relate them to formerly acquired advanced skills.
Content	first semester: Data Warehousing, Data Mining second semester: Data Visualisation, Machine Learning, Ontologies, NoSQL, Distributed Computing Concepts (MapReduce, Hadoop, etc.)
Duration	2 semesters
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	8
Work Load	4 h lectures plus 3 h post-processing per week = 105 h; 2 h discussion sections plus 5 h preparation/post-processing = 105 h; 30 h preparation for exam; in total: 240 h
Recommended Prerequisites	Datenbanken und Informationssysteme I
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every year during winter and summer term
Can also be used as	

Title	Complexity Reduction in Control
Module Label	D1.7
Module Type	Lecture
Area of Research	Numerical Mathematics
Responsible	Chair of Applied Mathematics
Learning Outcomes	 Understanding why many numerical approaches to control problems suffer from the curse of dimensionality Recognition of redundancies, such as the turnpike property in optimal control problems,
	and their use for complexity reduction
	Knowledge about state-of-the-art model order reduction methods for linear and nonlinear control systems and how they rely on the particular input-output-structure
	Ability to identify suitable techniques for particular applications
Content	State-of-the-art techniques for the reduction of complexity in control problems, as for instance
	 Model predictive control and its use as a complexity reduction technique
	 Sparse grid and parallel computing approaches for Hamilton-Jacobi-Bellman equations
	 Model order reduction methods for control systems, such as balanced truncation or proper orthogonal decomposition
	Implementation of selected algorithms in the tutorials
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	2 h lectures plus 1.5 h post-processing per week = 52.5 h; 1 h discussion sections plus 2.5 h preparation/post-processing = 52.5 h; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	A2.4: Mathematical Control Theory, A1: Numerical Methods for Differential Equations
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every two years
Can also be used as	module B1 in master Mathematics

Title	Meshfree Methods
Module Label	D1.8
Module Type	Lecture
Area of Research	Numerical Mathematics
Responsible	Chair of Applied and Numerical Analysis
Learning Outcomes	By the end of the course, a successful student should
	 know fundamental techniques to reduce the complexity in meshfree discretisations for solving partial differential equations numerically
	be able to choose a suitable meshfree method for a given problem
	master key methods of their analysis and implementation
Content	Short review of kernel-based collocation and particle methods for solving partial differential equations
	Discussion of various cost reducing methods including:
	 Fast summation techniques based on far field expansions of radial basis functions (RBF) and completely monotone functions
	Local Lagrangian methods, RBF-FD
	 Generalised alternating projection methods
	 multilevel methods for compactly supported RBF
	 Adaptive and greedy variants of the above methods
	Discussion of data structures and implementational details for meshfree methods
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	2 h lectures plus 1.5 h post-processing per week = 52.5 h; 1 h discussion sections plus 2.5 h preparation/post-processing = 52.5 h; 15 h preparation for exam, in total: 120 h
Recommended Prerequisites	A1: Numerical Methods for Differential Equations, B1: Applied Functional Analysis, A2.3: Constructive Approximation Methods
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every two years
Can also be used as	module B1 in master Mathematics

Title	Boundary Element Methods
Module Label	D1.9
Module Type	Lecture
Area of Research	Numerical Mathematics
Responsible	Chair of Scientific Computing
Learning Outcomes	Exterior boundary value problems are difficult to treat via finite element discretizations due to the unboundedness of the computational domain. This lecture presents a different approach by which the boundary value problem is reformulated as an integral equation on the boundary. In particular, this offers the advantage that only a lower-dimensional set has to be discretized. As a consequence, the resulting linear systems are significantly smaller but fully populated in general. The latter difficulty can be treated by local low-rank approximation.
	By the end of the course, a successful student should
	 know fundamental techniques to reduce suitable boundary value problems to boundary integral equations
	master key methods of the analysis and implementation of boundary integral methods
	be able to reduce the complexity of suitable discrete non-local operators
Content	Sobolev spaces on manifolds
	fundamental solutions of partial differential operators
	boundary integral operators and their properties
	boundary integral equations and their finite element discretization
	generating the matrix coefficients
	fast boundary element methods
	applications: potential equation, linear elasticity, Stokes equations
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	2 h lectures plus 1.5 h post-processing per week = 52.5 h; 1 h discussion sections plus 2.5 h preparation/post-processing = 52.5 h; 15 h preparation for exam, in total: 120 h
Recommended Prerequisites	A1: Numerical Methods for Differential Equations, B1: Applied Functional Analysis
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every two years
Can also be used as	module B1 in master Mathematics

Title	Optimization Methods in Machine Learning
Module Label	D1.10
Module Type	Lecture
Area of Research	Optimization, Data Analysis
Responsible	Chair of Applied Mathematics
Learning Outcomes	 Knowledge about the special nature of optimization problems in machine learning Understanding of optimization algorithms in machine learning Ability to apply optimization algorithms in machine learning properly
Content	Introduction to machine learning Stochastic gradient methods Proximal gradient methods Acceleration techniques
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	2 h lectures plus 1.5 h post-processing per week = 52.5 h; 1 h discussion sections plus 2.5 h preparation/post-processing = 52.5 h; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	Basic knowledge in numerics and optimization
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every two years
Can also be used as	module B1 in master Mathematics

4.2 Module D2: Special Skills in Scientific Computing

Title	Special Skills in Scientific Computing
Module Label	D2
Module Type	Lecture
Area of Research	Numerical Mathematics, Scientific Computing
Responsible	Chairs of Applied and Numerical Analysis, Applied Mathematics, Scientific Computing
Learning Outcomes	The goal of this module is to provide students with special skills in the areas of Numerical Mathematics and Scientific Computing, relevant for current research activities.
Content	An active field of mathematical research, in which specialized techniques are applied or in which known techniques from different areas are combined in an original way. Examples are: 1. Fractional order differential operators
	2. Optimization of nonsmooth problems
	Advanced topics of optimization with partial differential equations
	4. mathematical control theory for infinite-dimensional systems
Duration	1 semester
Language	English
Teaching Method	Lectures (2 h/week) and tutorials (1 h/week)
Credit Points	4
Work Load	2 h lectures plus 1.5 h post-processing per week = 52.5 h; 1 h discussion sections plus 2.5 h preparation/post-processing = 52.5 h; 15 h preparation for exam; in total: 120 h
Recommended Prerequisites	Advanced status of study
Grading	Oral or written exam; active participation in the tutorials
Frequency	Every year
Can also be used as	

5 Module Section E: Soft Skills

Title	Soft Skills
Module Label	E
Module Type	Seminar
Area of Research	
Responsible	Programme coordinator
Learning Outcomes	Key skills for personal development
Content	Participation in seminars devoted to presentation skills, data processing, literature research, handling of foreign-language literature, teamwork, etc.; for instance, the seminars academic writing, embodied communication, and time- and self-management are offered regularly by the Elite Network of Bavaria; the programme coordinator and your mentor will give individual recommendations
Duration	1 semester
Language	English
Teaching Method	Participation in seminars
Credit Points	2
Work Load	In total 60 h of seminars, i.e. 3–4 seminars
Recommended Prerequisites	None
Grading	Proof of attendance
Frequency	
Can also be used as	

6 Module Section F: Master's Thesis

Title	Master's Thesis
Module Label	F
Module Type	Thesis
Area of Research	all areas
Responsible	Programme coordinator
Learning Outcomes	Ability to prepare a scientific work (larger than a bachelor's thesis)
Content	Scientific work in the area of Scientific Computing that should have a connection with application-driven questions and with the focus of this master's programme. In particular, interdisciplinary problems should be treated.
Duration	2 semesters
Language	English or German
Teaching Method	
Credit Points	30
Work Load	900 h (editing time: at most 10 months)
Recommended Prerequisites	
Grading	Written thesis
Frequency	
Can also be used as	

7 Recommended Curriculum

The following recommended curriculum assumes that the studies start in winter term.

a) Full-time study

Sem.	Numerical Maths	sws	ECTS	Modeling	sws	ECTS	Computer Science	sws	ECTS	ECTS
1	A1 Numerical Methods for Differential Equations	4+2	6	B1 Applied Functional Analysis	4+2	8	C1-I	2+1	4	30
	D1-l	4+2	8	B2-I (non-math.)	2+1	4				
	A2-I	4+2	8	B2-I (non-math.)	2+1	4	C1-II	4+2	8	
2	D1-II, B2-II or A2-II	4+2	8				C2 Parallel Num. Methods	P 2 w.	2	30
3	F Master's Thesis		14	B3 Industrial Internship or D1-IV	P 6 w.	8				30
	D1-III	4+2	8							
4	F Master's Thesis		16	B4 Modeling and Status Seminar	S	8	E Soft Skills	S 60h	2	30
7	D2 Special Skills in Scientific Computing	2+1	4							00
	Numerical Maths		72	Modeling		32	Computer Science		16	120

b) Part-time study

Sem.	Numerical Maths	sws	ECTS	Modeling	sws	ECTS	Computer Science	sws	ECTS	ECTS
1	A1 Numerical Methods for Differential Equations	4+2	6	B1 Applied Functional Analysis	4+2	8				14
2	D1-l	4+2	8				C1-I	4+2	8	16
3	A2-I	4+2	8	B2-I (non-math.)	2+1	4	C1-II	2+1	4	16
4	D1-II, B2-II or A2-II	4+2	8	B2-I (non-math.)	2+1	4	C2 Parallel Num. Methods	P 2 w.	2	14
5	D1-III	4+2	8	B3 Industrial Internship or D1-IV	P 6 w.	8				16
6	F Master's Thesis		15							15
7	F Master's Thesis		15							15
8	D2 Special Skills in Scientific Computing	2+1	4	B4 Modeling and Status Seminar	S	8	E Soft Skills	S 60h	2	14
	Numerical Maths		72	Modeling		32	Computer Science		16	120

The following recommended curriculum assumes that the studies start in summer term.

a) Full-time study

Sem.	Numerical Maths	SWS	ECTS	Modeling	SWS	ECTS	Computer Science	SWS	ECTS	ECTS
1	A2-I	4+2	8	B2-I (non-math.)	2+1	4	C1-I	4+2	8	28
	D1-I	4+2	8							
2	A1 Numerical Methods for Differential Equations	4+2	6	B1 Applied Functional Analysis	4+2	8	C1-II	2+1	4	32
	D1-II, I, B2-II or A2-II	4+2	8	B2-I (non-math.)	2+1	4	C2 Parallel Num. Methods	P 2 w.	2	
3	F Master's Thesis		14	B3 Industrial Internship or D1-IV	P 6 w.	8				30
	D1-III	4+2	8							
4	F Master's Thesis		16	B4 Modeling and Status Seminar	S	8	E Soft Skills	S 60h	2	30
	D2 Special Skills in Scientific Computing	2+1	4							
	Numerical Maths		72	Modeling		32	Computer Science		16	120

b) Part-time study

Sem.	Numerical Maths	sws	ECTS	Modeling	sws	ECTS	Computer Science	sws	ECTS	ECTS
1	D1-l	4+2	8				C1-I	4+2	8	16
2	A1 Numerical Methods for Differential Equations	4+2	6	B1 Applied Functional Analysis	4+2	8				14
3	D1-II, B2-II or A2-I	4+2	8	B2-I (non-math.)	2+1	4	C2 Parallel Num. Methods	P 2 w.	2	14
4	A2-II	4+2	8	B2-I (non-math.)	2+1	4	C1-II	2+1	4	16
5	D1-III	4+2	8	B3 Industrial Internship or D1-IV	P 6 w.	8				16
6	F Master's Thesis		15							15
7	F Master's Thesis		15							15
8	D2 Special Skills in Scientific Computing	2+1	4	B4 Modeling and Status Seminar	S	8	E Soft Skills	S 60h	2	14
	Numerical Maths		72	Modeling		32	Computer Science		16	120